Collège Doctoral - Doktorandenkollegien

Statistical Physics of Complex Systems

Coventry - Leipzig - Lviv - Nancy

Home
People
Publications
Seminars
Schools
Contacts
PhD positions
Links

Publication

Title Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics
Authors Allegra N.
Reference Nucl. Phys. B (2015) to appear
ArXivarxiv:1410.4131
Abstract In this present work, some classical results of the pfaffian theory of the dimer model based on the work of Kasteleyn, Fisher and Temperley are introduced in a fermionic framework. Then we shall detail the bosonic formulation of the model {it via} the so-called height mapping which will be extensively used to interpret exact results. The complete and detailed fermionic solution of the dimer model on the square lattice with an arbitrary number of monomers is presented, and finite size effect analysis is performed to study surface and corner effects, leading to the extrapolation of the central charge of the model. The solution allows for exact calculations of monomer and dimer correlation functions in the discrete level and the scaling behavior can be inferred in order to find the set of scaling dimensions and compare to the bosonic theory which predict particular features concerning corner behaviors. Finally, some combinatorial and numerical properties of partition functions with boundary monomers are discussed, proved and checked with enumeration algorithms.


Head of page